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We propose a variational method for determining the
surface patterns of cylindrical gels for both swelling and
shrinking. Exact solutions are calculated for the initial
stages of such peristaltic instabilities. The morphology
and the formation mechanisms depend on a competition
between bulk elastic energy and surface tension.

The emergence of complex spatio-temporal patterns in grow-
ing gels has been the object of a number of physico-chemical
studies in the last years1. Indeed, polymeric gels are very soft
elastic materials, which can undergo a volume phase transition
when a small change of an external parameter, like tempera-
ture or solvent concentration, occurs. Pioneering experimen-
tal works of Tanaka and coworkers2 have demonstrated that
such volume variations, once geometrically constrained, gen-
erate residual stresses inside the material, which can eventu-
ally trigger an elastic instability. Thanks to the high controlla-
bility of the experimental systems, investigations on swelling
or shrinking of polymeric gels are used for understanding the
morphogenetic processes in soft biological matter, other than
guiding smart surface fabrication and biomaterial design.

In cylindrical gels, the surface patterns arising in swelling
and shrinking processes differ in both their morphology and
their formation mechanism. For swelling gels, incompatible
growth may result in a compressive strain driving a short-
wavelength buckling of the free surface, a mechanical instabil-
ity first reported by Biot3 for rubbers. In contrast, Matsuo and
Tanaka4 experimentally observed different types of shrinking
patterns. The appearance both of regularly spaced collapsed
gel planes (bamboo pattern) and of surface wrinkles (wrinkled
tube pattern) in the cylindrical gel was qualitatively explained
by different mechanisms of spinodal decomposition. The
spontaneous formation of alternated domains of collapsed and
swollen phases (bubble pattern), first interpreted by a phase
separation, was later explained as a capillary-driven instabil-
ity5. The origin of such a peristaltic modulation of the gel sur-
face is similar to the Rayleigh-Plateau instability of a liquid
jet, characterized by a long wavelength undulation reducing
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UPMC Univ Paris 06, Université Paris Diderot, UMR CNRS 8550,
24 rue Lhomond, 75005 Paris, France

the surface area while retaining the volume. In the case of a
soft gel, bubble formation during shrinking is a more compli-
cated and less understood mechanism, driven by the competi-
tion between surface tension and elastic bulk properties of the
cylinder. Moreover, experiments on acrylate-acrylamide gels
in water-acetone mixture have demonstrated that a mechano-
chemical coupling can drive the formation of different pat-
terns6. Bubbles are observed if the gel is shrunk almost ho-
mogeneously, while rings (longitudinal wrinkles) appear if a
mechanical compression (elongation) is imposed.

In this study, we aim at proposing a unified modeling for
both swelling and shrinking soft gels, deriving exact solutions
for the initial stages of both types of peristaltic instabilities.

We consider a soft cylinder with initial radius Ro and ax-
ial length L, confined at its lateral surfaces (z=0,L) by rigid
walls, preventing any longitudinal sliding. A homogeneous
growth process takes place in each point of the cylinder, so
that locally any volume element increases by a constant factor
J. Such a growth process, also referred as volumetric growth,
is described now by the so-called multiplicative decomposi-
tion of the deformation gradient F = FeFg

7, setting a homo-
geneous, anisotropic form for the growth tensor, which in po-
lar coordinates reads Fg = diag(gr,grgθ,gz), J being simply
J = detFg = g2

r gθgz and Fe the elastic strain tensor. For ini-
tially full cylinders we must set gθ = 1 in order to avoid sin-
gularities at R = 0. We assume that the soft cylinder behaves
as a neo-Hookean material, which is the entropic elasticity of
polymeric gels, so that the elastic energy per unit volume Ψ is

Ψiso = J · µ
2
(Trace(FT

e Fe)−3)−p · (detFe −1) (1)

where µ is the shear modulus and p, like the pressure in hy-
drodynamics, is the classical Lagrange multiplier ensuring the
incompressibility of the gel.
For an isotropic growth process with gr = gz = g, where
g > 1(g < 1) for gel swelling (shrinking), an obvious homoge-
neous elastic solution is given by a constant expansion (con-
traction) of the radius r = g3/2R =

√
JR, with θ = Θ, z = Z.

Nevertheless such a radial expansion (contraction) is respon-
sible for a compressive (tensile) stress in the longitudinal di-
rection (in our case the cylinder axis) and one can expect the
occurrence of a bifurcation as the growth rate g increases (de-
creases). To do so, and to respect the incompressibility of the
sample, we introduce a scalar generating function Φ(R,θ, z) in
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mixed coordinates in order to build arbitrary isochoric trans-
formations. Such function, equivalent to the stream function
used in hydrodynamics, solves exactly the incompressibility
condition, having the following gradient form:

r2 = 2 Φ,z; Z =
Φ,R

J R
; Θ = θ (2)

so that the elastic deformation gradient Fe can be rewritten as:

Fe =


1

g
√

2 Φ,z

(
Φ,Rz −

Φ,zz (Φ,RR−Φ,R/R)
Φ,Rz

)
g2 R Φzz√
2 Φ,z Φ,Rz

0

−Φ,RR−Φ,R/R
gΦ,Rz

g2 R
Φ,Rz

0

0 0
√

2 Φ,z
gR


(3)

and the incompressibility constraint detFe = 1 is identically
satisfied. In absence of external body forces and surface loads,
the elastic boundary value problem is equivalent to the mini-
mization of the total stationary energy Π of the cylinder, which
can be written as follows:

δΠ = δ
(∫

Ω̄z

Π̄zdΩ̄z

)
= δ

(
J−1

∫
Ω̄z

ΨisoΦ,RzdR dθ dz
)
= 0

(4)
where Ω̄z is the body volume in the intermediate mixed con-
figuration. The Euler-Lagrange equation, valid everywhere in-
side the cylinder and solving Eq.(4), using Einstein’s conven-
tion for summation reads:(

∂Π̄z

∂Φ,i j

)
,i j
−
(

∂Π̄z

∂Φ,k

)
,k
= 0 (5)

the index meaning either R or z. The two boundary conditions
at the free surface R = Ro are given by imposing minimiza-
tion with respect to arbitrary variations on Φ and on Φ,R, as
follows:

∂Π̄z

∂Φ,R
−
(

∂Π̄z

∂Φ,RR

)
,R
−
(

∂Π̄z

∂Φ,Rz

)
,z
= 0;

∂Π̄z

∂Φ,RR
= 0 (6)

and the two other boundary conditions impose regularity of
the solution at R = 0.
In order to perform a linear stability analysis of our ideal ho-
mogeneous elastic solution, defined by Φ0 = J(R2)z/2, we
assume a tiny periodic longitudinal perturbation, giving the
following expression of the scalar generating function:

Φ(R,z) =
J
2
(R2)z+ ε ·u

(√
JR
)
·
√

JR · cos
(

m
2πz
L

)
(7)

where m is a positive integer and | ε |≪ 1. Using Eq.(7), the
perturbation in Eq.(2) at the first order in ε can be rewritten in
the following form: r =

√
JR+ ε ·k u

(√
JR
)

cos(kz)

Z = z+ ε ·
(

u
′ (√

JR
)
+

u(
√

JR)√
JR

)
· sin(kz)

(8)

where we have introduced k= 2πm/L (see Fig.1). Substituting
the expression of Eq.(8) in Eq.(5), the bulk Euler-Lagrange
equation at the first order in ε reads:

L1LJ [u(r)] = 0 with LQ =

(
∂2

∂r2 +
1
r

∂
∂r

− 1
r2 − k2

Q

)
(9)

Note that L1 denotes the second order differential opera-
tor corresponding to the Laplacian in cylindrical coordinates
and that both operators accept as eigensolutions the modified
Bessel function of first order I1 and K1. Since only I1 is reg-
ular for r = R = 0 the analytical solution of Eq.(9) is easily
obtained by superposition, so that u(r) reads:

u(r) = α
(

I1(kr/
√

J)
I1(kro/

√
J)

+β
I1(kr)
I1(kro)

)
(10)

At the same way, the Euler-Lagrange equation at the free sur-
face ro = g3/2Ro =

√
JRo, from Eq.(6), take the following ex-

pressions:

B1[u(r)] = L1[u(r)]+2k2u(r) = 0 (11)

CJ [u(r)] = k2r2 (ru)′+ J
[
−u+ ru

′
+2k2r3u

′ − r
(
r2u′′

)′]
= 0
(12)

Noticing that L1I1(kR) = k2(1+ J)/J and L1I1(kr) = 0 one
easily derive from the boundary condition in Eq.(11), the co-
efficient β in Eq.(10) as β =−(J+1)/(2J), α remaining arbi-
trary at linear order. The dispersion relation Ω(J) gives k as a
function of g at threshold with Ω(J) = 0. Found by substitu-
tion of Eq.(10) in the boundary condition given by Eq.(12), it
reads:

Ω(J)= 2+
kro

J(J−1)

[
(1+ J)2 I0(kro)

I1(kro)
−4J3/2 I0(kRo)

I1(kRo)

]
(13)

Plotting this implicit relation for k,g > 0, it is possible to
show that the smallest value of g giving rise to an instabil-
ity is obtained for k going to infinity, which is the typical
behavior of a surface Biot instability3. In order to find this
threshold value of growth, we can use the asymptotic relation
In(x)∼ ex/

√
2πx, valid for x≫ 1, in Eq.(13) and find the exact

value for the threshold growth rate gth giving rise this surface
instability:

gth =

(
11
3

+
2
3
· ((199−3

√
33)1/3 +(199+3

√
33)1/3)

)1/3

(14)
which is approximatively ≃ 2.2534 and higher than the one we
derived for a growing gel layer attached to a fixed plane8. Be-
ing ez is the unit vector in the longitudinal direction, the insta-
bility threshold is fixed by the longitudinal stretch λz = |Feez|
inside the material. In our case, such a stretch is compres-
sive, being given by λz = 1/gth ≃ 0.4437, which corresponds
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to the numerical result obtained by Vaughan9. However, there
is a lack of a typical lengthscale to fix the undulation wave-
length to a finite value. Such an instability costs a lot in surface
energy and surface tension fixes the wavelength instability at
threshold. Let A be the surface energy associated to a surface
tension γ at ro:

A = 2πγ
∫

r(z)
√

1+ r2
,zdz = 2πγ

∫ √
2Φ,z +Φ2

,zzdz (15)

Considering the competition between a bulk elastic energy
density Π̄z and the surface energy A, the variation problem
reads δA+δΠ = 0, which induces a change only in first of the
two boundary conditions in Eq.(6), which becomes :

∂Π̄
∂Φ,R

−
(

∂Π̄
∂Φ,RR

)
,R
−
(

∂Π̄
∂Φ,Rz

)
,z
+

(
∂A

∂Φ,zz

)
,zz
−
(

∂A
∂Φ,z

)
,z
= 0

(16)
Substituting Eq.(7) in Eq.(16), we find the correction of the
boundary condition CJ,γ in Eq.(12) due to the capillarity :

CJ,γ[u(r)] = CJ [u(r)]+ k2 γg2

µ
r(−1+ k2r2)u(r) (17)

where it appears a capillary length, given by Lc = γ/µ, which
intervenes in the dispersion relation of the instability, as fol-
lows:

Ω̃(J) = Ω(J)+
γ

g5/2µR0
(1− Jk2R2

o) = 0 (18)

First, from Eq.(18) it is possible to detect the occurrence of
a capillary instability (at long wavelength, i.e. k ≪ 1) if the
following condition holds:

γ = 2µRo
(1+2g3)

g1/2 (19)

which in absence of growth (g = 1) recovers the static re-
sult for soft cylindrical gels10. The right hand side of
Eq.(19) is a positive function having a minimum for g =
(1/10)1/3 ≃ 0.4641, corresponding to ηmin = (Lc/Ro)min =
12(21/6/55/6) ≃ 3.5227. Therefore, we can state that the in-
stability mechanism is characterized by the ratio between the
capillary length Lc and the radius R0: if η= Lc/Ro ≪ ηmin one
has a surface instability driven by a critical gel swelling (g >
1), while if η ≥ ηmin a capillary instability is favored by the
gel shrinking. Typical values of the capillary energy for soft
polymeric gels are of the order of 35− 70 · 10−3N/m, while
their shear modulus can range from tens to thousands of Pa1,
corresponding to a characteristic lengthscale Lc ≃ 0.1−1mm.
The theoretical prediction of Eq.(19) is therefore in accor-
dance with the experimental results of Matsuo and Tanaka4.
For R0 of the order Lc/ηmin, the occurrence of bubble pattern
can be triggered by the action of the surface tension, enhanced
by the observed formation of a dense skin layer on deswollen
gels, taking over the stabilizing effect of the bulk elasticity.

Fig. 1 Isochoric perturbation of a cylinder with L=15, R=1.5, ε=0.3.

Moving from the isotropic model of gels, now we analyze
the instability accounting for the presence of fibers inside the
cylinder. In fact, cylindrical structures in the biological realm
(e.g. myelinated nerves) are often characterized by longitudi-
nal fibers, undergoing stretch-induced beading in their physi-
ological functions11. Taking into account a longitudinal fiber
reinforcement, the anisotropic strain energy function can be
modeled as follows12:

Ψtot = Ψiso + J · K1

4
·
(
λz −λ−1

z
)2

(20)

where K1 is a material parameter determining the fiber stiff-
ness, an λz indicates the longitudinal elastic stretch.
Substituting the expression of Eqs.(3, 7, 20) in Eq.(5), the bulk
Euler-Lagrange equation at the first order in ε reads:

L1LJ̄ [u(r)] = 0 with J̄ = J
(

µ+g
K1

2

)
/

(
µ+

K1

2

)
(21)

where LJ̄ denotes the same second order differential opera-
tor, J̄ accounting for material anisotropy. We deduce immedi-
ately the general solution for the perturbed displacement u(r)
of Eq.(21), considered regular for r = 0, as :

u(r) = α

(
I1(kr/

√
J̄)

I1(kro/
√

J̄)
+β

I1(kr)
I1(kro)

)
(22)

by replacing J by J̄, being β =−(1+ J̄)/(2J̄).
Only the boundary condition at the free surface ro = g3/2Ro,
from Eqs.(6,16) is modified with J replaced by J̄ , CJ̄,γ,K1

tak-
ing the following expressions once surface tension and mate-
rial anisotropy are taken into account:

CJ̄,γ,K1
[u(r)]=CJ̄ [u(r)]+

k2g2r

(µ+ K1
2 )

(
γ(−1+ k2r2)−K1rg2)u(r)

(23)
As done before, we deduce without difficulty the dispersion
relation substituting Eqs.(22) in the boundary condition given
by Eq.(23), having the following simplified form:

0= 2+
kr0(1+ K1

2µ )

J(J̄−1)

(1+ J̄)2 I0(kro)

I1(kro)
−4J̄3/2

I0(
kro√

J̄
)

I1(
kro√

J̄
)

+ γ(1− k2r2
0)

µg5/2Ro

(24)
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Using the asymptotic expansion for k → ∞, we can find a sim-
plified dispersion relation for the surface instability. In partic-
ular, if γ/µ, γ/K1 ≪ 1, i.e. the capillarity is a local effect at the
free surface, the growth threshold g∗ of the surface instability
is given by the following relation:

1+ J̄ = 2J̄3/4; or g3
∗ · (µ+g∗K1/2) = (µ+K1/2) ·g3

th (25)

which states that the presence of an axial anisotropic rein-
forcement lowers the growth threshold g∗ of the swelling in-
stability. In particular, such a critical threshold is bounded
by an upper level given by the isotropic case (gth, when
c1/K1 ≫ 1), and a lower value given for c1/K1 ≪ 1 by:

gmin
∗ = g3/4

th ≃ 1.8392 (26)

which is surprisingly the same threshold we found for the
swelling of a surface-attached gel layer8. Finally, we inves-
tigate the occurrence of a surface instability looking at the
limit of Eq.(24) for k → 0, which is the case of shrinking. In
that case, the threshold relation can be expressed as a function
characteristic length-scales, as follows:

η∗ =
γ

(µ+ K1
2 )Ro

=
η

1+ K1
2µ

=
2
√

g

(
1+2J̄+

K1g4

µ+ K1
2

)
(27)

so that the minimum value η∗ for the anisotropic case is
greater than the one found in the isotropic case, while the
threshold growth is almost unchanged. In particular, if K1 >>
µ, the minimum threshold is determined by a growth rate g∗ =
(1/21)1/4 ≃ 0.4671, which gives ηmin ≃ 1.6721. Compared
to the isotropic case, the presence of a material anisotropy fa-
vors the occurrence of a swelling instability in Eq.(25), while
has a stabilizing effect in shrinking, from Eq.(27), with re-
spect to capillarity driven undulations. According to our
theoretical predictions, the observed beading of nerve fibers
can be interpreted as a peristaltic instability driven by the
surface tension of their external membrane. Taking into
account experimental values11,13 of K = 0.1 − 1 MPa and
γ = 0.8(unmyelinated)−2(myelinated fiber)N/m, the typical
lengthscale Lc ≃ 1− 10µm is of the same order as the nerve
radius R≃ 0.5−5µm. Therefore applying an equivalent longi-
tudinal stretch λz = 1/g> 1 to the nerve has the effect to lower
the threshold value η∗ in Eq.(27), possibly triggering the onset
of a surface instability. Such a prediction of our model is sup-
ported by the long wavelength undulation and the reversibil-
ity of beading in experiments, occurring while stretching both
myelinated and unmyelinated nerve filaments.
In this work, we have studied the formation of surface patterns
observed for growing cylindrical gels. Using a nonlinear elas-
tic analog of the stream function in hydrodynamics, swelling
and shrinking instabilities are found to be driven by competi-
tion between bulk elasticity and surface tension. The short-
wavelength undulations in swelling are caused by residual

deformations, while bubble-like patterns occur in shrinking
cylindrical gels with a radius about the order of the capillary
length. We have calculated the exact solutions of the initial
shapes of the undulations as well as the analytical thresholds
for the instabilities. Although we predict the effects of homo-
geneous volume changes on the occurrence of peristaltic in-
stability, we do not consider the gel-solvent dynamics, which
in turn is found to fix the preferred wavenumber of the peri-
staltic pattern14. The proposed gel model has been finally
used for studying pattern formation of soft fibrous cylinders,
mimicking the beading instability of nervous filaments. Fiber-
reinforcements stabilize with respect to shrinking instabilities:
the increase in elastic stiffness determines a decrease in the
critical filament diameter which triggers the formation of sur-
face undulations. A quantitative understanding on how elas-
ticity of the fibers and surface tension concur for promoting
this beading instability can have an impact for the design of
polymer nanofibers15. The control of the number and sizes of
the beads in fabrication techniques is in fact a key aspect for
a number of applications, from drug-delivery agents to soft
tissue engineering. In conclusion, the proposed simultaneous
treatment of elastic growth, surface tension and microstructure
is of utmost importance both for understanding soft tissues
morphogenesis and for applications in biomedical sciences.
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